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/1. Introduction A

Reading texts on the low resolution images is difficult. Text
based images with low resolution typically occur on old cameras,
such as CCTV. The basic solution is to replace old CCTV cameras
with new cameras, but this requires an increased budgets.
Another solution to this problem is to use "Single-Image Super-
Resolution (SISR)" technique. This resolution enhancing
technique is the focus of this project.

In this project, some SISR methods that have already been
implemented will be analysed — focusing on those specifically
used for text based images.

2. Aim/Objectives

* This project aims to analyse which SISR method performs
best on text based images.

13 SISR methods in 3 different categories will be analysed.

* 4 image datasets will be used for analysis.

* SISR methods’ performance will be analysed by 4 Objective

”Image Quality Analysis(IQA)” metrics.
* Finally, by comparing IQA results on 4 different image sets,
optimal method for each image set will be found.

3. Process

UpSampling Methods

KN )

3 UpSampled

Down - \ pSamp
w oo, —
N

Image
Quality

Analysis
Results

4-1. Up-sampling
Method/Model Selection

* Interpolation

Interpolation methods are usually used as a

baseline to compare other methods.!1]
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Used to up-sample texts as detecting and preserving edges of the
character are important.

* jCBI (interactive Curvature Based Interpolation ):

N

Modified NEDI method which introduces second-order derivatives of

image brightness for interpolation [

* iNEDI (improved New Edge Directed Interpolation):

Improved NEDI method which solves several problems of NEDI such

as the estimation method of the edge component. [3!

* Deep-Learning

The deep-learning method is a widely used state-of-the-art technique
which has dramatically improved the performance of SISR in recent
years. 4]

* VDSR: 20 layers using high learning rate with residuals of image for

training the model. []

* FSRCNN: Fast SRCNN by introducing a deconvolution layer on the

last layer of the network, reducing the dimension of the input
feature and applying smaller filter but more mapping layers. [7!

* ESPCN: Convolutional neural network with complex filters for each

feature map. [©]

* EDSR: Unnecessary modules from ordinary ResNet architecture are

removed and a residual scaling function is implemented for stable
training of this model. (8!

* DRCNN: Up to 16 recursive layers applied with recursive supervision
and skip-connection to handle training stage problems. P!

* LapSRN: Laplacian Pyramid Super-Resolution Network. This method

does not use the pre-interpolation process, hence reducing the
complexity. [10]
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The most popular image quality metric.[18!
(Higher value correlates to better quality)

(z.uxﬂy + Cl)(zaxy + ¢3)
(ux + 3 + c1)(0f + 05 +¢3)

(Higher value correlates to better quality)

SaSpc - Se() - [S1X) - S| PCr(x)

5-2. Process Implementation

* Programming Language: Python and MATLAB.

* Graphic User Interface (GUI) is built to provide a window to
select multiple up-sampling methods and parameters (eg. Scale
factor) for non-programmer users.

* Besides GUI, a command-line interface was used to gather IQA
results of all images and all scale factors.

Image Quality Analysis

%-1. Image Quality Analysis (IQAT

Similar to PSNR, it is often used as an image quality metric to measure

overall difference between original image and the up-sampled image.
(Smaller value correlates to better quality)

PSNR = 2010g10 MAXOriginal — 1010g10 MSE

This method assesses the reduction in structural information.[16!

This method uses low-level features to imitate Human Visual
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3
6. Results

Overall Image Quality Analysis
Compared by image sets (only for scale by 4)

Scale Factor: 4
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“iCBI” showes best performance for

A

all image-sets and all IQA metrics.
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Conclusion/Discussion

 The iCBI method shows the best performance in all image categories.

images.

* The deep-learning method is state-of-the-art in SISR, but pre-trained models assessed on this project may be trained with the
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image set in a specific category, so the performance result showed lower than expected.
 VDSR may showed worst performance on most cases due to pre-trained model used different type of color scale which is

YMCK color scale whereas other methods used RGBA scale.

A

8. Future Works

 However, IQA metrics used for this project are objective which does not have a high correlation with human visual recognition.]
* This means the best performance on objective IQAs does not fully guarantee the readability of the text on the up-scaled

In a future project, all deep-learning models will be trained with text-based images using higher computing
resources, which can improve the performance of each model.
* Aliterature review of the project showed the SISR method for upscaling by a factor of 8 is still under development,

unlike the factor of 4 and 2 where the methods show similar performances. | would like to research and study in-
depth deep-learning methods and propose a better method for up-scaling, especially for scaling by a factor of 8.
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